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SUMMARY

A hybrid spectral=�nite-di�erence scheme is proposed to determine the inertial �ow inside narrow chan-
nels. The �ow �eld is represented spectrally in the depthwise direction, which together with the Galerkin
projection lead to a system of equations that are solved using a variable step �nite di�erence discretiza-
tion. The method is particularly e�ective for non-linear �ow, and its validity is here demonstrated
for a �ow with inertia. The problem is closely related to high-speed lubrication �ow. The validity of
the spectral representation is assessed by examining the convergence of the method, and comparing
with the fully two-dimensional �nite-volume solution (FLUENT), and the widely used depth-averaging
method from shallow-water theory. It is found that a low number of modes are usually su�cient to
secure convergence and accuracy. Good agreement is obtained between the low-order description and
the �nite-volume solution at low to moderate modi�ed Reynolds number. The depth-averaging solution
is unable to predict accurately (qualitatively and quantitatively) the high-inertia �ow. The in�uence of
inertia is examined on the �ow. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thin-�lm �ow is encountered in the processing industry, particularly in lubrication, die �ow,
coating, injection molding, and die casting. The understanding of the �ow inside a channel of
arbitrary shape for high-inertia �ow remains challenging, despite the continuous development
of new solution techniques and the advent of powerful computational platforms. The presence
of geometrical non-linearities, coupled with material non-linearities such as inertia (high-
speed lubrication, and die casting) and non-Newtonian e�ects (injection molding), makes the
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problem di�cult to investigate. The problem can be reduced by one dimension by implement-
ing the Hele-Shaw or lubrication approximation for thin �lms [1]. Although the lubrication
assumption remains the basis for the simulation of �ow of thin �lms, it is mostly used with
inertia e�ects neglected [2]. The handling and understanding of inertia e�ects is precisely the
object of the present study.
The in�uence of inertia in lubrication and die casting problems has been addressed in sev-

eral studies [3–9]. In classical lubrication theory, the Navier–Stokes equations are reduced
to the Reynolds equation under the assumption that the inertia forces are negligible com-
pared to the viscous forces. Recently, the need to include inertia e�ects has arisen because
of the increasing number of lubrication �ow at moderately large Reynolds numbers [8]. Such
applications include large size bearing operating with conventional lubricants, bearings and
seals operating with non-conventional lubricants such as liquid metals and water, and the
use of high-speed bearings. In these cases, it is imperative to extend the Reynolds equation
[1] to include inertial e�ects. Chen and Chen [3] have reported that the in�uence of �uid
inertia in journal bearings can exceed 10% in terms of load. In the case of uni-directionally
loaded slider bearings, load capacity increases in direct proportion to Re; the increase be-
ing around 4% for Re=1000 and around 1% for Re=1 [4]. In die casting, inertia e�ects
are clearly dominant. The molten metal is injected into the die cavity under high pressure
and velocities for reduced cycle times. Typical �lling times are on the order of 40 ms and
the Reynolds number could be as high as 10 000 [5]. Therefore, common simpli�cations
used for modelling less complex �ow problems in casting and high-speed lubrication �ow,
such as the assumption of viscous dominated �ow are not valid. The inclusion of inertia
is thus essential for any �uid �ow model used in die casting and high-speed lubrication.
However, the handling of convective non-linearities presents major challenges in thin-�lm
�ow.
Although the lubrication formulation reduces the pressure to its hydrostatic part, thus elim-

inating the momentum equation in the depthwise direction from the problem, the dimension
of the problem remains the same as the original equations. Benney’s long-wave (LW) ap-
proximation [10] is often used, especially for low-inertia �ow. At high Reynolds number,
inertia is better accounted for through the ‘boundary-layer’ (BL) approximation, which in-
cludes the e�ect of transverse �ow and the convective terms. Salamon et al. [11] carried out
a �nite-element solution of the full Navier–Stokes equations for the �ow in a falling �lm.
Comparison of their results with those based on the LW approximation, indicates that serious
limitations exist in the validity of the LW equation. The major di�erence between the original
Navier–Stokes equations and the BL equations is the hydrostatic variation of the pressure
across the �lm depth. As a result, only the transverse momentum equation is eliminated, but
the convective terms are retained in the remaining equations, and the number of boundary
conditions is reduced. However, the solution of the BL equations remains essentially as di�-
cult to obtain as that of the Navier–Stokes equations [12]. A depthwise integration, along z,
of the momentum equation(s) in the lateral direction(s), along x (and y) is usually performed
by assuming a self-similar semi-parabolic �ow pro�le in the z-direction, as was proposed by
Shkadov [13]. Although the depth-averaged equations are only of second order in time, they
yield plausible results, at least qualitatively, but they remain fundamentally questionable be-
cause of the semi-parabolic assumption [14, 15]. The parabolic approximation is widely used
in the literature, and its validity was established experimentally by Aleksenko et al. [17] for
thin-�lm �ow. However, it is generally argued that the parabolic approximation is valid at
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low or moderately-low Reynolds number, and provided the surface waves are far from the
entry [18, 19]. In addition to high-inertia �ow, other �ow conditions that restrict the range of
validity of the semi-parabolic pro�le include the presence of end e�ects, turbulent �ow, and
(most likely) nonlinear e�ects stemming from shear-thinning or viscoelastic e�ects [20, 21].
A more rigorous approach for the solution of the thin-�lm equations becomes almost as dif-
�cult to achieve as for the original Navier–Stokes equations. Hence, conventional solution
techniques such as the �nite-element or �nite-di�erence methods are not suitable given the
rapid spatio-temporal variation of the �ow �eld in the presence of steep waves. Frequent
remeshing, and an e�ective implicit time-stepping scheme are required. Ruyer-Quil and Man-
neville [22] used a three-term expansion of the �ow �eld in the transverse direction, and
obtained three coupled equations for the surface height, �ow rate and stress. Takeshi [12]
examined the �ow in a falling �lm at moderate Reynolds number and large but �nite Weber
number, using a regularization method, which consists of a combination of the Pade ap-
proximation and the long-wave expansion. More recently, Khayat [23, 24] proposed a formal
spectral approach for transient thin-�lm �ow, whereby the velocity is expanded in terms of
orthonormal functions in the depthwise direction. A hierarchy of equations is obtained using
the Galerkin projection. Comparison led to excellent agreement with Watson’s similarity so-
lution [16]. Given the importance of inertia upon inception, the BL formulation rather than
Benney’s LW approximation [10] was used. The �ow equations were �rst mapped over the
rectangular domain, and a formal expansion of the velocity �eld in terms of orthonormal basis
functions is introduced for the �ow �eld. The formulation closely follows and generalizes that
of Zienkiewicz and Heinrich [25], which emphasizes water �ow over extended areas.
In this paper a hybrid spectral=�nite-di�erence methodology is developed to solve the

boundary-layer equations for a �ow inside a channel of varying depth. The method consists
of expanding the �ow �eld in a �nite series of known global, smooth orthogonal functions
in the streamwise and depthwise directions. The problem formulation is given in Section 2,
where the lubrication equations are brie�y reviewed. The solution procedure is outlined in
Section 3. Results are given in Section 4, where convergence is assessed, and comparison
with results based on fully two-dimensional �ow is carried out. Finally, concluding remarks
are given in Section 5.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Consider the two-dimensional �ow inside a cavity of a viscous, Newtonian and incompressible
�uid, of density � and viscosity �. The two-dimensional Cartesian system of coordinates is
taken as x1 and x2, with the x1 and x2 axis lying in the streamwise and depthwise direction,
respectively. Let u1 and u2 be the corresponding velocity components, and P the pressure.
The �ow is driven by a constant pressure gradient maintained inside the straight channel
portion upstream, of depth D. Gravity is assumed to be negligible. The �ow is assumed to
be symmetric with respect to the x1 axis, resulting from the symmetry in �ow conditions
and channel shape, x2 =H (x1). The governing equations are cast in terms of dimensionless
variables. Typically, in two-dimensional thin-channel �ow, there are two characteristic lengths,
L, along x1, and D along x2. The reference, V , is taken as the maximum velocity inside the
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straight channel. The dimensionless variables are introduced as follows:

(x; y)=
(x1
L
;
x2
�L

)
; (u; v)=

(u1
V
;
u2
�V

)
; h=

H
D
; p= �2

L
�V
P (1)

Two important dimensionless groups emerge in the problem, namely, the Reynolds number,
Re, and the aspect ratio, �:

Re=
�VL
�
; �=

D
L

(2)

In dimensionless form, and if terms of O(�2) and higher are excluded, the governing equations
for steady-state �ow reduce to:

ux + vy=0 (3)

�2 Re(uux + vuy) = uyy − px (4a)

py =0 (4b)

where a subscript denotes partial di�erentiation. The parameter �2Re = � is often referred to
as the modi�ed Reynolds number [1]. Equations (3) and (4) are of the boundary-layer type.
They simply state that the depth variation of the pressure is negligible, and the elongational
di�usive term is dominated by the shear term. Note that � is not necessarily negligible since
Re may be large enough for this term to be of order one. In this work, Re is assumed
to be O(1=�2). If the modi�ed Reynolds number is very small, i.e. Re is of O(1), then all
non-linear terms can be neglected, which will represent creeping �ow of viscous �uids. In
that case, Equation (4) reduces to Reynolds equation in lubrication theory [1]. In this work,
the �ow inside thin (symmetric) channels of arbitrary shape will be examined. Thus, the
domain of computations for Equation (4) is given by (x; y)∈ [0; 1] × [0; h(x)]. Although the
combination �2Re may be treated as a similarity parameter, it is convenient to refer to � and
Re as two separate similarity parameters, as indeed is the case when comparison with the
fully two-dimensional �ow is carried out.
The no-slip and no-penetration boundary conditions at the upper boundary give

u(x; y= h)= v(x; y = h) = 0 (5a)

while the symmetry conditions lead to

uy(x; y=0)= v(x; y=0)=0 (5b)

The �ow is assumed to be driven by an imposed axial velocity U0(y)=U (x=0; y) at the
channel entrance. Thus, the general boundary condition at the entrance to the cavity is given
by

u(x=0; y)=U0(y) (5c)
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At x=1, the �uid is assumed to exit the channel under atmospheric condition so that

p(x=1)=0 (5d)

System (3)–(4) is next solved subject to boundary conditions (5).

3. SOLUTION PROCEDURE

In this section, the problem is solved using a spectral expansion for velocity and pressure.
The depth-averaging method is also used for comparison, and will be outlined as well.

3.1. Spectral expansion

The problem is solved by expanding the velocity components u(x; y) and v(x; y) in terms of
appropriate orthogonal functions, and using the Galerkin projection method to obtain a set of
ordinary di�erential equations (ODEs) that govern the expansion coe�cients. The expansion
coe�cients are then determined using �nite-di�erence method. Given the symmetry of the
�ow, Equation (4) clearly indicates that only a symmetric �ow is admissible. Hence, u(x; y)
and v(x; y) are expanded as

u(x; y) =
∞∑
n=0
un(x) cos

[
(2n+ 1)

�y
2h

]

v(x; y) =
∞∑
n=0
vn(x) sin

[
(n+ 1)

�y
h

] (6)

where un(x) and vn(x) are the expansion coe�cients. The above expressions of u and v
satisfy the boundary conditions ((5a) and (5b)). Obviously, a truncation level will have to be
imposed, leading to a �nite number of modes, M , in the expansion.
The expressions for u and v are substituted in Equation (3) and the Galerkin projection

method is used, which consists of multiplying Equation (3) by sin[(m+ 1)�y=h]; m∈ [0; M ],
and integrating with respect to y from −h to h. The following expression is then obtained
for the expansion coe�cient vm, namely

vm(x)=− h(x)
�2(m+ 1)

M∑
n=0

[
sin(n−m− 1=2)�
(n−m− 1=2) +

sin(n+m+ 3=2)�
(n+m+ 3=2)

]
u′n(x) (7)

Similarly, after applying the Galerkin projection for the x-momentum equation (4) and sub-
stituting the expression for vm, the following relation is obtained:

uk(x)=Akpx +
M∑
m=0

M∑
n=0
Bkmnu′mun (8)

where

Ak =− 16(−1)kh2
[�(2k + 1)]3
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and

Bkmn =
4�h

[�(2k + 1)]2

{〈
− cos

[
(2n+ 1)�y

2h

]
cos

[
(2m+ 1)�y

2h

]
cos

[
(2k + 1)�y

2h

]〉

+
1
2

M∑
p=0

(2n+ 1)
�(p+ 1)

〈
sin

[
(p+ 1)�y

h

]
sin

[
(2n+ 1)�y

2h

]
cos

[
(2k + 1)�y

2h

]〉

×
[
sin(m− p− 1=2)�
(m− p− 1=2) +

sin(m+ p+ 3=2)�
(m+ p+ 3=2)

]}

The notation 〈 〉 indicates integration over the interval y∈ [−h; h]. The system of Equations
(7)–(8) along with the boundary condition (5) is a well-posed problem if px is known.
However, the pressure remains one of the unknown in the system, and an additional equation
is needed. This equation is based on the constancy of the volume �ow rate. In dimensionless
form, one has

∫ h

0
u(x; y) dy=

2
�
h(x)

M∑
n=0

(−1)nun(x)
2n+ 1

=
1
3

(9)

Although mass conservation is ensured through the continuity equation, Equation (9) is still
needed as the volume �ow rate is actually prescribed. Thus, there are M + 2 unknowns in
the system, namely, the velocity coe�cients and the pressure gradient. One of the unknowns,
u0(x), is eliminated, in terms of the remaining coe�cients, by substituting expression (6) into
Equation (9). Hence,

u0(x)=
1
6�h

−
M∑
n=1

(−1)nun
2n+ 1

(10)

Upon substituting expression (10) into Equation (8) for k=0, one obtains an expression for
px in terms of un for n∈ [1; M ]. In this manner, the pressure gradient is eliminated in terms
of the M velocity coe�cients, using the �rst equation in (8), namely that corresponding to
k=0. These unknown coe�cients are determined by solving the set of M equations resulting
from system (8), which can be recast as a set of �rst-order coupled ODEs for the coe�cient,
un¿1(x), with the �rst-order derivatives given explicitly in terms of the lower-order terms.
The boundary conditions at x=0 for system (8) are deduced from (5b), leading to:

un(x=0)=
1
h

∫ +h

−h
U0(y) cos[(2n+ 1)�y=2h] dy; vn(x=0)=0 (11)

Note that for the present problem, U0(y)=1 − 4y2. The problem thus reduces to an initial-
value problem, which is solved using the Runge–Kutta–Verner method (IMSL-DIVPRK). The
sub-routine DIVPRK �nds an approximation to the solution of a system of �rst-order ordinary
di�erential equations for given initial data. The sub-routine attempts to keep the global error
proportional to a user-speci�ed tolerance. A step size (�x) less than 0.01 was used to maintain
a tolerance of 10−7.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:383–398



NARROW-CHANNEL FLOW WITH INERTIA 389

3.2. Depth-averaging method

This method is based on a parabolic representation of the streamwise velocity, which is
solution that is strictly valid for a �ow with zero inertia. An approach, which has been
widely used in the literature, is to maintain a parabolic representation for u even if inertia is
not negligible. The method consists of averaging out the inertia e�ects across the �lm. Upon
using boundary conditions (5a) and (5b) on u, as well as condition (9) on the �ow rate, one
has

u(x; y)=− 1
2h3
(y2 − h2) (12)

In this case, the depthwise velocity component is determined upon integrating the continuity
equation, which gives

v(x; y)=− h
′

2h

[(y
h

)3
− y
h

]
(13)

Although the continuity equation as well as the boundary conditions (5) by expressions (12)
and (13), the momentum equation (4a) can only be satis�ed in the average sense. Thus, the
pressure becomes dictated by the following equation:

�2 Re h2
[∫ h

0
(uux + vuy) dy

]
=1− h3px (14)

In the limit of negligible inertia, Equation (14) reduces to the Reynolds equation for the
pressure [1].

4. RESULTS AND DISCUSSION

The methodology above is now applied for the steady-state �ow in Figure 1. The convergence
is �rst examined. The validity of the spectral representation is then assessed upon comparison
with the �nite-volume method. Comparison against the depth-averaging method is also carried
out. Once the numerical accuracy is established, results on the in�uence of inertia are given.
The cavity is assumed to be symmetrically modulated, with the wall shape given by h(x)= [1+
A sin(2�x=�)]=2. Here, A and � are the (dimensionless) modulation amplitude and wavelength,
respectively (in units of D). The �ow upstream, at channel entrance, is assumed to be fully

1

h (x)

U0
 (y)

-1/2

1/2

P(x   1) = 0

y 

x0 ≥

Figure 1. Computational domain in the (x; y) plane, and dimensionless notation.
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Figure 2. Convergence assessment and the in�uence of the number of modes on the stream-
wise �ow for �=A=0:1, �=1 and Re=10. The �gure shows (a) the u pro�les across the
gap at x=0:75, for M ∈ [0; 4], and (b) the rate of convergence of the velocity at the channel

centre at di�erent locations x∈ [0:25; 0:75].

developed, of the Poiseuille type. In this case, the streamwise velocity at the inlet is given
by U0(y)=1 − 4y2. In order to ensure full �ow development, an extended length of the
straight portion of the cavity is added upstream of the modulated portion (see Figure 1).
The added entrance length is estimated to be equal 0:06� Re [26], for laminar �ow. Note
that �Re gives a Reynolds number that is based on the width of the channel. Thus, the
domain of computation is taken as (x; y)∈ [−0:06� Re; 1]× [−h(x); h(x)]. All results are given
in dimensionless quantities.
Consider the �ow corresponding to �=A=0:1, �=1 and �=1. The convergence of the

�ow �eld is assessed by varying the number of modes over the range M ∈ [0; 4]. The rate of
convergence is typically illustrated in Figure 2.
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Table I. The convergence of the streamwise velocity tip at di�erent axial locations
for �=A=0:1, �=1 and �=1.

M x=0:25 x=0:50 x=0:75

0 0.95199 1.04719 1.16355
1 0.90571 0.99296 1.10663
2 0.91178 0.99999 1.11407
3 0.90868 0.99637 1.11027
4 0.90982 0.99771 1.11168

The streamwise velocity distributions across the gap at x=0:75 are shown in Figure 2a.
The coarsest result corresponds to the inclusion of only one mode (M =0), which tends to
overestimate the streamwise velocity at the centre, and slightly underestimate it elsewhere.
Convergence is essentially attained for M¿3. The fast rate of convergence is clearly re�ected
in Figure 2(b) and in Table I, where the velocity tip is plotted against M at three di�erent
axial locations, for the same conditions as in Figure 2(a). Similar rates of convergence are
obtained for the velocity at other y locations. The velocity drops sharply from M =0 to
M =1 for all three locations, and the e�ect of the number of modes becomes increasingly
smaller as M increases. The velocity remains essentially unchanged for M¿3. It is important
to emphasize that the above �gures indicate that the convergence of the streamwise velocity
is uniform throughout the gap.
A somewhat slower rate of convergence is found when the depthwise velocity compo-

nent is examined. The results are summarized in Figure 3. When only one mode is retained
(M =0), the depthwise �ow is essentially non-existent, v(x; y)=0. Similarly to streamwise
�ow, convergence is attained for M¿3, as shown in Figure 3(a). The absolute maximum
depthwise velocity tends to increase with M , and its location shifts slightly towards the cen-
treline (y=0). Figure 3(b) shows the absolute maximum value and its location plotted against
the number of modes at x=0:75. There is a signi�cant jump for M small, with a slight over-
shoot at M =2. The rate of convergence of the location of the maximum=minimum is slightly
faster, as indicated by the leveling in Figure 3(b). Finally, additional calculations show that
the rate of convergence displayed in Figures 2 and 3 is typical of any Reynolds number in
the moderate range. Consequently, the results reported below are based on M =3.
The convergence assessment above gives only an estimation of the relative error of the for-

mulation and numerical implementation. That is, the solution may very well converge when
higher-order modes are added, but the question remains as to whether the solution has con-
verged to the exact value. In order to estimate the absolute error of the proposed methodology,
the results are compared against the results based on a fully two-dimensional �nite-volume
method, using the FLUENT software package. Comparison with the two-dimensional �ow is
important as it allows the assessment of the error resulting from the lubrication approxima-
tion. The boundary conditions used in FLUENT are Poiseuille �ow conditions upstream at
the entrance to the �ow domain, and zero di�usion �ux for all �ow variables with an overall
mass balance correction at the exit. An extrapolation procedure is used by FLUENT, which
updates the out�ow velocity and pressure in a manner that is consistent with fully-developed
�ow between parallel plates.
Comparison against the depth-averaging method is also conducted. This method is widely

used in the literature, whereby the streamwise velocity is assumed to be parabolic across the
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Figure 3. Convergence assessment and in�uence of the number of modes on the depth-
wise �ow for �=A=0:1, �=1 and Re=10. The �gure shows (a) the v pro�les across the
gap at x=0:75, for M ∈ [0; 4], and (b) the rate of convergence of the maximum depthwise

velocity, vmax, and its location, ym.

gap. This assumption leads to an exact solution in the absence of inertia, and has been adopted
for non-zero Reynolds number �ow. However, the parabolic pro�le is only valid when inertia
is not signi�cant (Re¡500) (see, for instance, Reference [24]).
Comparison among the three methods is typically illustrated in Figure 4, where the stream-

wise and depthwise velocity pro�les are plotted against the lateral position, y, for �=A=0:1,
�=1 and �=1, at axial location x=0:75. The results illustrate the situation for low-Reynolds-
number �ow. The �gure clearly indicates that agreement is excellent among the three methods
concerning the streamwise velocity component (Figure 4(a)). However, there is considerable
discrepancy in the case of the depthwise velocity component (Figure 4(b)). The solution from
the depth-averaging method is negligibly small (essentially zero). There is a small di�erence
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Figure 4. Comparison among the spectral, �nite-volume, and the depth-averaging methods for
low-inertia �ow, for �=A=0:1, �=1 and Re=10. The �gure shows (a) the u pro�les, and (b) the

v pro�les, across the gap at x=0:75.

(on the order of 3%) between the spectral and �nite-volume solutions, particularly near the
extrema. The current formulation tends to underestimate slightly the buildup of depthwise
�ow.
Figure 5 shows the velocity pro�les from the three di�erent schemes at higher modi�ed

Reynolds number, �=100, at axial location x=0:25. The depth-averaging method is unable
to re�ect the e�ect of inertia, which can be noticed from the �gure and is a major drawback
of this method. The spectral method represents the inertia e�ect very well and results agree
closely with �nite-volume (FV) solution.
The issue regarding the accuracy of the solution based on FLUENT is important to examine,

as this solution is taken as ‘exact’. Since the �ow is steady, only the mesh size in�uences the
solution. In this case, the calculations were carried out on a PC with Pentium III processor,
550MHz. The FV method used in FLUENT consists of integrating the fully two-dimensional
conservation equations (as opposed to the approximate boundary-layer equations used in the
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Figure 5. Comparison among the spectral, �nite-volume, and the depth-averaging methods for
high-inertia �ow, for �=A=0:1, �=1 and Re=1000. The �gure shows (a) the u pro�les, and (b) the

v pro�les, across the gap at x=0:25.

present formulation) over each control volume ensuring conservation over each control vol-
ume. Central values for the velocity and pressure are stored, and values at the faces are
interpolated. This is accomplished using a �rst-order upwind discretization scheme. The grid
used in FLUENT is unstructured and is generated by mesh generation software GAMBIT. In
this case, FLUENT uses internal data structures to assign an order to the cells, faces, and
grid points in a mesh, and to maintain contact between adjacent cells.
The streamwise and depthwise velocity pro�les are shown in Figure 6 for di�erent mesh

sizes. The spectral solution is also included for reference. The streamwise velocity increases
at any y location as the mesh is re�ned (Figure 6(a)), with a reasonably fast rate of con-
vergence. The rate of increase of the velocity is higher near the centre than elsewhere. The
�nite-volume solution tends to generally underestimate the strength of streamwise �ow. More
importantly, the �nite-volume solution appears to converge toward the spectral pro�le with
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Figure 6. In�uence of mesh size on the �nite-volume results for �=A=0:1, �=1 and Re=10.
The �gure shows (a) the u pro�les, and (b) the v pro�les, across the gap at x=0:75. The spectral

pro�les are also included for reference.

mesh re�nement. In contrast, the depthwise velocity is generally overestimated by the �nite-
volume method (Figure 6(b)), and is less accurate than the streamwise velocity prediction for
the cruder mesh sizes. However, it is clear from the �gure that the rate of convergence is
fast, and there is excellent agreement with the spectral solution.
Regarding CPU and storage requirements, these have also been assessed. It is obvious that

the low-dimensional spectral scheme proposed requires little storage on any computational
platform. It is also found that the CPU time to solve the problem by FLUENT is typically
around 30 min (excluding pre- and post-processing time), compared to only 3–4 min for the
spectral solution.
Finally, now that the accuracy of the method is fully established, it is useful to explore

the e�ect of inertia on the �ow. This is done by varying the modi�ed Reynolds number. The
velocity pro�les for di�erent � are shown in Figure 7 at x=0:25. The streamwise velocity
component increases slightly near the centre and decreases slightly elsewhere as shown in
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Figure 7. In�uence of inertia for �=A=0:1 and �=1. The �gure shows (a) the u pro�les, and (b) the
v pro�les, across the gap at x=0:25, for �∈ [1; 100], where �= �2Re.

Figure 7(a). There is relatively little qualitative change, other than the pro�le deviating away
from parabolic as inertia increases. In contrast, inertia seems to have a more signi�cant in�u-
ence on the depthwise �ow (Figure 7(b)). The e�ect on the change in velocity is much more
pronounced between �=1 to 10, than �=10 to 20, which is almost 4 times larger.

5. CONCLUSION

A hybrid low-order spectral method, along with a variable-step �nite-di�erence discretization,
is proposed to solve a wide class of lubrication problems, with inertia e�ects. The general
lubrication formulation is applied to the �ow inside a (two-dimensional) symmetric channel
of arbitrary thickness. The validity of the approach is assessed upon comparison with the
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�nite-volume and depth-averaging method. The in�uence of inertia is also examined. The
study shows that the low-order spectral representation in the depthwise direction can handle
non-linearity with good accuracy. The accuracy of the solution depends on the number of
modes, and in this study the solution converges after only a few modes. Thus, the spectral
representation is particularly e�ective in this case since, in thin-�lm �ow, the variation of the
�ow �eld in the depthwise direction is not expected to be strong. The solution agrees very well
with the �nite-volume solution (FLUENT) at low to moderate modi�ed Reynolds number,
whereas the widely used depth-averaging method fails even at moderate modi�ed Reynolds
number. The streamwise velocity increases at the centre (y=0) and decreases slightly else-
where with inertia. The proposed method requires little storage and one-tenth of CPU time
than �nite-volume software package.
This study is fundamentally important, as it establishes an e�ective solution methodol-

ogy that handles non-linear �ow in lubrication problems. Potential extensions include non-
Newtonian �ows, namely when shear-thinning and viscoelastic e�ects are incorporated, as
well as other �ow geometry.
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